Dendrimer Brain Uptake and Targeted Therapy for Brain Injury in a Large Animal Model of Hypothermic Circulatory Arrest
نویسندگان
چکیده
Treatment of brain injury following circulatory arrest is a challenging health issue with no viable therapeutic options. Based on studies in a clinically relevant large animal (canine) model of hypothermic circulatory arrest (HCA)-induced brain injury, neuroinflammation and excitotoxicity have been identified as key players in mediating the brain injury after HCA. Therapy with large doses of valproic acid (VPA) showed some neuroprotection but was associated with adverse side effects. For the first time in a large animal model, we explored whether systemically administered polyamidoamine (PAMAM) dendrimers could be effective in reaching target cells in the brain and deliver therapeutics. We showed that, upon systemic administration, hydroxyl-terminated PAMAM dendrimers are taken up in the brain of injured animals and selectively localize in the injured neurons and microglia in the brain. The biodistribution in other major organs was similar to that seen in small animal models. We studied systemic dendrimer-drug combination therapy with two clinically approved drugs, N-acetyl cysteine (NAC) (attenuating neuroinflammation) and valproic acid (attenuating excitotoxicity), building on positive outcomes in a rabbit model of perinatal brain injury. We prepared and characterized dendrimer-NAC (D-NAC) and dendrimer-VPA (D-VPA) conjugates in multigram quantities. A glutathione-sensitive linker to enable for fast intracellular release. In preliminary efficacy studies, combination therapy with D-NAC and D-VPA showed promise in this large animal model, producing 24 h neurological deficit score improvements comparable to high dose combination therapy with VPA and NAC, or free VPA, but at one-tenth the dose, while significantly reducing the adverse side effects. Since adverse side effects of drugs are exaggerated in HCA, the reduced side effects with dendrimer conjugates and suggestions of neuroprotection offer promise for these nanoscale drug delivery systems.
منابع مشابه
SRL-coated PAMAM dendrimer nano-carrier for targeted gene delivery to the glioma cells and competitive inhibition by lactoferrin
Glioma, as a primary tumor of central nervous system, is the main cause of death in patients with brain cancer. Therefore, development of an efficient strategy for treatment of glioma is worthy. The aim of the current study was to develop a SRL peptide-coated dendrimer as a novel dual gene delivery system for targeting the LRP receptor, an up-regulated gene in both BBB and glioma cells. To perf...
متن کاملSRL-coated PAMAM dendrimer nano-carrier for targeted gene delivery to the glioma cells and competitive inhibition by lactoferrin
Glioma, as a primary tumor of central nervous system, is the main cause of death in patients with brain cancer. Therefore, development of an efficient strategy for treatment of glioma is worthy. The aim of the current study was to develop a SRL peptide-coated dendrimer as a novel dual gene delivery system for targeting the LRP receptor, an up-regulated gene in both BBB and glioma cells. To perf...
متن کاملPharmacological Preconditioning with Diazoxide in the Experimental Hypothermic Circulatory Arrest Model.
BACKGROUND Hypothermic circulatory arrest includes a remarkable risk for neurological injury. Diazoxide, a mitochondrial adenosine triphosphate-dependent potassium ion (K+ATP) channel opener, is known to have cardioprotective effects. We assessed its efficacy in preventing ischemic injury in a clinically relevant animal model. Methods: Eighteen piglets were randomized into a diazoxide group (n ...
متن کاملHypothermic extracorporeal circulation in immature swine: a comparison of continuous cardiopulmonary bypass, selective antegrade cerebral perfusion and circulatory arrest.
OBJECTIVE Selective antegrade cerebral perfusion (SCP) has been widely used during complex congenital heart surgery and theoretically affords some degree of neuroprotection. There are limited data to support this claim, however. This study was designed to compare, at profound hypothermia, continuous cardiopulmonary bypass, SCP and circulatory arrest in a survival model of extracorporeal circula...
متن کاملNeurologic Injury Following Hypothermic Circulatory Arrest
Cardiothoracic surgeons are faced with the challenge of protecting the brain during the sensitive time of interruption of normal cerebral blood flow. The brain is an exceptionally complex organ with a functional anatomy that is difficult both to understand and assess. Experimental and clinical studies have shown that the mechanism of neural injury is multifactorial. As such, discussions regardi...
متن کامل